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We show that for photon communication, the rate R, = I nat per photon is the rate
beyond which one encounters an explosive increase in both the required ratio of peak-to-
average signal power and in the required bandwidth expansion. On the basis of these
results we conjecture that no practical photon communication system can be designed to

operate above 10 nats per photon.

l. Introduction

In a recent report (Ref. 1), it was shown that the R,-
parameter associated with noiseless optical communication
using photon-counting techniques (hereafter we call this
“photon communication”) is one nat per photon. Now for any
channel, R, is widely believed to be the rate above which the
implementation of a reliable communication system becomes
very difficult, but there is no really sound mathematical
support for this belief. In this paper, however, we will give
rigorous mathematical substantiation to this “R, conjecture,”
for the special case of photon communication.

Roughly speaking, we shall prove that for photon com-
munication, the rate R, = 1 is the rate beyond which one
encounters an explosive increase in both the required ratio
of peak-to-average signal power and in the required bandwidth
expansion.

Precisely speaking, what we shall prove is this. Let p denote
the rate (in nats per photon) of a given reliable photon com-
munication system, let o denote its required ratio of peak-to-
average signal power, and let 8 denote its required bandwidth

expansion factor. Then necessarily, as we will show in Sections
II and 111,

a = e -1 )

p=—" 2

Thus as p increases linearly, both « and § must increase expo-
nentially. On the basis of Eqs. (1) and (2), we conjecture that
no practical photon communication system can be designed
with p 2 10. On the other hand, in Ref. 2 it was shown that
one could design a practical system at about p = 3 using pulse
position modulation and Reed-Solomon codes. Thus, the gap
between what is presently practical and what may someday be
practical is reasonably small. This is in spite of the fact that
channel capacity (i.e., the largest p that is theoretically pos-
sible) is extremely large (Ref. 3).

Il. The Poisson Channel Model

We assume that any photon communication system works
as follows. The time interval during which communication
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takes place is divided into many subintervals (“‘slots”), each of
duration t,, seconds. The transmitter is a laser which is pulsed
during each time slot; it may be pulsed with a different intens-
ity in each slot. At the receiver is a photon counter, which
accurately counts the number of photons received during each
time slot. We denote by x; the expected number of photons
received during the ith time slot; x; will be called the intensity
of the ith pulse.

It may be that “noise photons” are present in such a
system, but in many cases of practical interest, noise photons
are extremely rare. (For example, in a careful analysis of a
potentially practical system, Katz estimated the rate of arrival
of noise photons to be around 107> per second.) In any event
we shall make the assumption that no noise photons exist. In
this case, because of the Poisson nature of photon arrivals,
the probability that exactly & photons will be received during
aslot in which the laser was pulsed with intensity x is e™*x* /k!

Thus described, the optical channel is a discrete memoryless
channel with input alphabet equal to the set of nonnegative
real numbers (the possible values for the intensities x;), and
output alphabet equal to the set of nonnegative integers (the
possible outputs of the photon counter). If a real number x
is transmitted, the probability that the integer k will be
received is given by

k
X

p(klx) = ¢ - (3)

We call the channel described by Eq. (3) the Poisson channel.

A code for this channel is a set of vectors x, = (x;;. ...,
X,), i=1,..., M, of length n. Each component X; is a non-
negative real number and represents an intensity of the trans-
mitting laser. Assuming that each component of a code word
requires one time slot for transmission, the rate of such a code
is

log M
R = nats per slot (4)
n

On the other hand, each component X;; represents an average
number of (received) photons, and so the code’s rate in nats
per photon is ’

p =— nats per photon, where 5)

= |
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u = (Z xl_].)/n,% photons per slot (average) (6)
iLj

The rate R in Eq. (4) is a measure of “bandwidth expan-
sion.”” If, for example, we are transmitting at a rate of 4 nats
per second, using a code of rate R nats per slot, it follows that
we require 4/R slots per second. Thus, the slot rate is equal to
the nat rate multiplied by the factor 1/R. We thus define

_n
g = Tog 71 slots per nat (7)

and call § the bandwidth expansion factor.

In Eq. (6), u represents the average pulse intensity, i.e.
the average number of photons received per time slot. At a
given frequency this number is proportional to the average
received power. On the other hand, the quantity

L = max x,. (8)
ij q ’

represents the maximum required pulse intensity required by
this particular code, and it is proportional to the maximum or
peak received power. We denote the ratio of L to u by o

max (xi.)
L i Y
U T ©
neM Z i
iJ

We have now precisely defined the quantities «, §, and p
mentioned in Section 1. Our proof of inequalities in Egs. (1)
and (2) rests on certain information — theoretic results about
the Poisson channel, which we now describe.

We would like to compute the information — theoretic
capacity of the Poisson channel, whose statistics are given in
Eq. (3); that is, the maximum possible mutual information
I(X;K), where X is a nonnegative random variable. and K is a
nonnegative integer-valued random variable related to X by
the conditional probabilities. However, it is very easy to see
that this maximum is infinite (take X to be a discrete random
variable which assumes a very large number of values which
are very far apart). To get a meaningful problem, we must
restrict X' somehow. The most natural restriction (Eq. (6))
is to fix the mean of X; and so we define

C(w) = sup [[(X;K): E(X) = u] (10)



According to Shannon’s noisy-channel coding theorem (see
Ref. 4, Chapter 7), C(u) represents the maximum possible rate
(in nats per channel use) of a reliable photon communication
system which is restricted to operate at an average of u photons
per slot or less.

A second possible restriction is on the maximum value that
X can assume (Eq. (8)). Thus we define

C(uL) = sup [[(XK): E(X) = u, X< L] (1)

Again, according to Shannon’s theorem, C(u,L) represents
the maximum possible rate for any photon communication
system which is restricted to operate at an average of <u
photons per slot, and a maximum of L photons per slot.

In Section III, we will prove the following results about
C(u) and C(u, 1)

1
Cu) < log (1 +u)+ulog (1 +—I~I) (12)

Cl) < plog %,ifL <1 (13)

In the remainder of this section, we will show how Egs.
(12) and (13) can be used to prove our main results, Egs. (1)
and (2).

First, note that by the converse to the noisy-channel coding
theorem, the rate R of a reliable communication system which
operates at an average of u photons per slot is bounded by

R < C(1) (14)

Now C(u) itself is bounded by Eq. (12), and since log (1 + )

< i, we have
R <u {] + log (1 +117>} (15)

The rate of this system measured in nats per photon is, by Eq.
(5). R/u, and so

o < 1+log (1 +~;—) (16)

for p > 1 a simple algebraic manipulation of Eq. (16) yields

p< @ t-n! (17)

Now since the bound on the right of Eq. (15) is easily seen
to be an increasing function of y, it follows from Egs. (15) and
(17) that

R<p+v (18)
e’ -1

but R = 1. This proves Eq. (2).

To prove Eq. (1) observe that Eq. (13) tells us that o = ¢
for L < 1. This is stronger than Eq. (1); thus Eq. (1) can only
fail for L > 1. But if L > 1, the ratio « = L/u is by Eq. (17)
greater than e#~1 — 1. This proves Eq. (1).

It now remains to prove Egs. (12) and (13). This we do in
the next section.

lll. Proof of Egs. (12) and (13)

In this section we shall give proofs of the important in-
equalities of Eqs. (12) and (13). We begin with Eq. (12).

By definition, C(u) is the largest possible value which can
be assumed by the mutual information /(X;K) when the test
source X is restricted to satisfy £(X) = u. But by well-known
results on mutual information (see Ref. 5, Chapter 1),

I(X:K) = H(K)- HK|X)
(19)
< H(K)

where in Eq. (19) H(K) denotes the entropy Z,p, log pi! of
the random variable K. Since for the Poisson channel,
E(KiX) = X, it follows that E(K) = £ [E(K|X)] = £(X), and
so the random variable K has the same mean as X, viz., u.

The problem of maximizing the entropy of a nonnegative
integer-valued random variable with a given mean is easily

handled with standard information-theoretic techniques.
Omitting the details (see Ref. 5, Problem 1.8), the result is

H(K) < log (1 +w)+ulog (l +Ill> (20)

(provided E(K) = u, K assumes only nonnegative integer
values). Equations (19) and (20) combine to give Eq. (12).
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We turn now to Eq. (13), which lies somewhat deeper. The
problem is to maximize /(X;K) given that the distribution of
X is restricted to [0,L] and has mean u.

We introduce the notation (see Eq. (13))

k

Pl = e @1)

to denote the probability that k will be received given that x
is transmitted. We define

P, = Elp, (0] 22)

the expectation being with respect to the distribution of X.
The quantity p, represents the probability that k will be the
channel’s output, given that the input is the random variable X.

Using standard techniques of convex analysis, it is now
possible to show that a particular distribution confined to
[0.L] with expection u maximizes /(X,K) if and only if for
some constants C and A,

P, (x)

Fx) =

Z p,(x) log

A~ W) - C<0,0<x<1

(23)
where equality holds in Eq. (23) at all points of support of
the distribution. (Eq. (23) is essentially the same as Theorem
4.5.1 in Gallager (Ref. 4). The only differences are that our
channel has a countably infinite alphabet, rather than a finite
one, and that we have an extra constraint £(X) = u, which
necessitates the Lagrange multiplier term A(x - u). However,
the modification of Gallager’s analysis needed to arrive at
Eq. (23) is quite easy, and we omit it.)

Equation (23) is a very strong condition that must be
satisfied by an extremel distribution. For example, we use it
to show the following.

Lemma: For any L,u, a maximizing distribution can have mass
at at most one point on (0,1).

Proof: Define

'p, = E(@*X¥) (24)

Then by Schwarz’s inequality [E(X) X2)] E(Xz) E(X;)
applied to X = = e~ X/2 x(k-D2 X, = e X/2 X(k+1)/2 we
have
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2
2 <g,_ &, k=1 (25)

The function F(x) of Eq. (23) can be written in the form

F(x) = x(logx- 1)+ Z p (x)log~—+}\(x w=C
k=0

(20)

If we differentiate F(x) twice,
Prmy () = by (x), we get

using the formula py (x) =

1 1 1
F) = 5t 20 ey 20, 0+, (0] g -
k
1 St
=+ Z P x)log (27
Exbkr2
s k g 4
CF(x) = X jop 12 (28)
k! g2
=0 kt+1

Each coefficient in the series Eq. (28) is by Eq. (25) non-
negative. Since e*/x is a decreasing function for 0 <x <1,
it follows that e¥F"(x) is decreasing in this range also. Since
eXF"(x) is positive at x = 0+, e*F"(x), and so F"'(x) also, can
be zero for at most one value of 0 <<x <{1.

An extremel distribution by Eq. (23) must have F(x) <0
for all 0 <x < L. Since F(x) is differentiable, it follows that
F'(x) = 0 whenever F(x) = 0. Now if say F(x,)=F(x,) =0
with 0 <x, <x, <1, then there exists x; <x; <x, with
F'(x;) = 0. By the above remarks F'(x ) = P '(x,) =0 as well.
This in turn implies the existence of x,, x5: x; <x, <x3<
x5 < x, with F'(x,) = F"(x5) = 0. But we argued above that
F"(x) could vanish at most once on (0,1). Thus, F(x) can
vanish at most once on (0,1), i.e., the optimizing distribution
can have mass, at most, at one point in (0,1). This completes
the proof of the lemma.

We now use the lemma to prove Eq. (13). Since L <1, the
lemma tells us that a distribution on [0,L] with £(x) = u can
have mass only at x = 0 and one other point x = £ < L. We
shall complete the proof of Eq. (13) by showing that for any
distribution concentrated at x = 0 and x = L the resulting
mutual information /(X,K) satisfies

[(XK) < ulog % (29)



(It is sufficient to take £ = L because the right side of Eq. (29)
is an increasing function of L.)

Thus, let X have distribution
P(X=0)=p
(30)
P(X=L)=gq, ptg=1

Then a straightforward calculation yields

IXK) = (- Q)log jog vQlog L L@~ )

0
Q=q-¢") @D

Our goal is to show that this quantity is < u log (L/u); but
i =E(X)=qL.So we must show that the right side of Eq. (31)
is < gL log 1/q. Subtracting this quantity from Eq. (31), we
define for a fixed L >0

F@) = (- Q)log 11 +@-al)log -1~ Q)

0

and wish to show that f(¢) < 0 for 0 < ¢ < 1. This is easily
seen, given the following (whose straightforward verifications
are omitted):

f(0) = f(1)=0 (32)

() = -, f'(1)=0 (33)

(@) = Oonlyforg, = 1 1 (34)
a, ylorg, = —— "~ 1

Because f(0) = 0, f'(0) = -o°, f(q) is negative for all suffi-
ciently small g. If now f(g) = 0 for 0 <q <1, it would neces-
sarilty follow that f" would vanish at two interior points of
(0,1). Since also f'(1) = 0, f"" would vanish at two points of
(0,1), contradicting Eq. (34). Thus f(g) < Oforall0sg <1,
and this completes the proof of Eq. (13).

References

1. McEliece, R. J., “The R ,-Parameter for Optical Communication Using Photon Count-
ing.” DSN Progress Report 42- 53, Jet Propulsion Laboratory, Pasadena, Calif., Oct. 15,

1979, pp. 62-65.

2. McEliece,R. J. and L. R. Welch, “Coding for Optical Channels With Photon Counting,”
DSN Progress Report 42-52, Jet Propulsion Laboratory, Pasadena, Calif., Aug. 15,

1979, pp. 61-66.

3. Pierce, J. R., “Optical Channels: Practical Limits With Photon Counting,” IEEE Trans.
Commun., COM-26 (1978), pp. 1819-1821.

4. Gallager, R. G., Information Theory and Reliable Communication. Wiley and Sons,

New York, 1968.

5. McEliece, R.J., The Theory of Information and Coding, Addison-Wesley, Reading,

Mass., 1977.

67



